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Coulomb fields generated by minimal coupling™
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Abstract. In the ground state of an electrically charged spiniess quantum particle, interact-
g with only the longitudinal part of the quantized electromagnetic field, the exact Coulomd
poleninal ts generated dynamically by minimal coupling if the non-clectromagnetic mass
of the particle vamshes and if the couphng constant {correspondmg to renormalized charge)
15 such that ¢ < a_, =25 Thus, contrary to claseical expectations, Gauss’ law need not
be imposed as a physicality constraint 1o this case For macroscopic values of the electne
charge, the Coulomb field 1s energetically disfavoured If the charged particle s assumed
massive and non-relativistic, the ground state has an unphysical static background charge
te which the particle 1s bound In this case translational as well as gange invariance is
spontaneously broken.

1. Introduction

The breaking of a local chiral gauge symmetry by the ground state of the Higgs field
is part of the standard scenario for the clectroweak interaction. In ordirary gauge
theories, on the other hand, local gauge invariance of states is conventionally enforced
by imposing Gauss’ law as a physicality constraint. The different treatment of ordinary
and chiral gauge symmetries has recently been related to the non-existence of a chirally
invariant lattice regularization [1]. In fact, for ordinary lattice Qcp it had been shown
heuristically [2] that even if the Gauss constraint is released the ground state would
not break local SU(3) invariance. Thus the vacuum states in both kinds of gauge theory
can be treated on the same formal basis. To what extent can Gauss' law be expected
to hold automatically also for the ground states of the charged sectors in an ordinary
gauge theory?

For 2+ 1-dimensional continuum Yang-Milis theory, the non-degeneracy of the
unconstrained vacuum state in the temporal gauge was already derived in [3] by
exploiting an analogy beiween the Yang-Mills Hamiltonian and non-relativistic oo-
dimensional quantum mechanics. The argument of [2] is based on Wilson fermions
and holds to all orders in the hopping-parameter and strong-coupling expansions. In
fact, successive orders in these expansions are generated by gauge invariant operators
B?/g” in the strong coupling and xyea - (V—iA)4 in the hopping parameter series—
while at zeroth order the Hamiltonian g”E”+ mifiy,® has the gauge invariant ground
state

M1 E=0® ] [n,=0).

hinks sttes

It is not in contradiction with classical expectations that the absolute ground state of
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an unconstrained local gauge theory would respect Gauss' law automatically In the
case of electromagnetism,

¥V E{x}=p(x)

is clearly satisfied for the trivial solution of zero field strengths and charge densities.
But in the presence of a charged particle, neglection of the Gauss constraint would
still annul all Coulomb fields in the classical theory, thus leading to unphysical
dynamical behaviour. In the classical ground state configuration the momentum of the
particle as well as the unconstrained electric and magnetic field strength would exactly
vanish. In quantum theory, however, such a configuration is in contradiction with the
canonical commutation relations. As will be shown in the present paper, the quantum
Gauss constraint is indeed redundant in this case for a certain range of dynamical
parameters.

Not much seems to be known about the ground staie of the Maxwel field with
minimal coupling to a quantum particle. The related polaron problem of a quantum
particle interacting with a scalar field has only been approximately solved using
sophisticated variational techniques [4]. In order to enable a gualitative analysis, the
transversal modes of the Maxwetll field shall be neglected in the present paper. This
should be a physically sensible simplification since Abelian local gauge invariance and
the Coulomb fields accomplishing it are entirely contained in the longitudinal ntodes.

For a massive non-relativistic Schrodinger particle (section 2} the interacting
ground-state properties can then be inferred from standard qualitative methods of
quantum mechanics. The energetically favourable states have a non-dynamicatl back-
ground charge density (which is a measure of deviation from physicality) to which
the particle is bound. The spatial extent of the bound siate, as usual, is of the order
of 1/a Compton wavelengths. The background charge is an extended distribution,
though; it exactly counters the probability density {not the intrinsic charge density) of
the Schridinger particle. This implies that the dynamically generated field of the
particle vanishes on length scales greater than the Bohr radius but takes the Coulomb
form, indeed, on length scales between the Bohr radius and the ultraviclet cut-off (the
classical electron radius).

For & relativistic particle with zero non-electrostatic mass (section 3) the square-root
kinetic energy requires the use of integral inequalities. (Due to the negative energy
states the Dirac form of a relativistic kinetic energy is not appropriate for studying
one-particle ground states.) In this case the quauiatwe ground staie properties very
much depend on the particle’s electric charge. If e”/4m <2.5 the system behaves as
expected by extrapolation from the non.relativistic case. The background charge
distribution of total charge —e then spreads out uniformly in space and is thus effectively
absent. Consequently, the exact Coulomb field is generated by the dynamical mechan-
ism inherent in the minimal coupling term of the Hamiltonian. If ¢” takes macroscopic
values, however, the collapse of the Coulomb field becomes energetically favourable.

The relation of the semi-phenomenological model parameters m and e to the
parameters of full QeD is discussed in section 4.

2. Nen-relativistic particle

A locaily gauge invariant model of the charge-one sector of QED that can be qualitatively
solved by standard methods of quantum theory is a charged non-relativistic quantum



Coulomb fields generated by mmimal coupling 2777

particle interacting with only the longitudinal {Coulomb) modes of the quartized
electromagnetic field. As for the choice of a quantization procedure, we shall start out
from the temporal gauge in which the vector potential, even in the general non-Abeban
case, is a Cartesian coordinate [3). The canonically conjugate momentum is the electric
field strength, and the canonical commutation relations can be postulated consistently
in the standard form

[Et=) Ap=18ud(x=y)  [Eu(x), E(0]=0=[Aulx), A(y)].
For the quantum particle the commutation relations are
[ét., ﬁr]=i3ki [éks QAI]=0=[ﬁk; ﬁi]

The complete temporal-gauge Hamiltonian of the minimally coupled system would be
1 - ~ A
Hepoer=1 I (E{x)*+(Vx A(x))%) d3x+a (P—eA(Q)) (1)

where the ‘reg’ subscript denotes a smoothed-out particle-ficld interaction uv regular-
ization with a charge distribution p, is defined for any function f by

fenlx) = J fix=y)pop) &y. (2)

The kinetic energy of a Schridinger particle interacting with only the Coulomb modes
of the gauge fieid is

| - ,.
Hkm=2—m(P_eAlung reg(Q))2v (3)

The transversal modes, coupled in (1) to the longitudinal ones through the particle
energy, are now dynamically independent and can be omitted from the following
considerations. Thus the model Hamiltonian reads

. . 1 . 4 .
H=} I Epong(x) &x 5 (P = €Ay (@)

Vacuum fluctuations are still present due to the non-commutativity of E‘loﬂg and A.ong.
They can be absorbed in the decoupling transformation

— “ V- A‘re (-\:) 3 ]
Use. exp[;e Imd x | 4

The effect of this transformation on the particle momentum P can be obtained by
using the commutator expansion e*Be "= B+[A, B]+... which here terminates at
the first commutator:

5 5 V- Arglx) )
P o= 3
Utee Ud,c(P+eVQ I——%—Mx_ o)

The term added to P just cancels the longitudinal vector potential in the kinetic energy.
Likewise, the transformation adds a Coulomb ficld to the electric field strength
operator,

B(x)Usee = Uge E(x) + €V (4l — G])72L). (5)
The Coulomb field is dependent on the particle position operator and is rendered finite

hy tha regnlatization of the charca dancity
vy v ISgLNaiiZadiln O1 il Cnarge Gonsiy.
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We can now pull out the unitary factor U, of (4} from all states in the Hilberg
space and transform the Hamiltonian accordingly
gyt 1 0 Ay <112 43 ‘62
H'= UdecHUden=f (Elong(r)+evt(4#|x_0|)reg}~d X+Zn_- (6)
In this representation the longitudinal part of the vector potential 1s manifestly a cyclic
vanable only the conjugate momentum E,,,, occurs in H', and it commutes with any
other operator 1n the transformed Hamiltonian. Hence, by working in an E,,,, ¢igen-
base, the cigenvalues {‘cigenfields’) of E,,, can be treated as static background fields
As usual, we shall write the longitudinal E field and its eigenvalues as a gradient

Elaﬂg(x) =V®unph(x) (7}

The @ field wili later turn out to measure the deviations from Gauss™ law, Inserting
(7)1nto (6} we obtain the familiar form of the total energy for a particle in an electrostatic
potential (E.,r is the Coulomb self-energy)

2

, . A P
H = Eselt‘+% J (Vq)unph(x))_ d-ix_'- e(bunph reg(Q) +5’_?;

The carets have been dropped from the ®s because we are now working in the @
eigenbase. To determine the ground state of this Hamiltoruan we first note that 1n a

& eigenstate the only degrees of freedom left are those of the wavefunction of the
Schridineer narticle ah(n) Since onlv the p!upnvahmc of the @ eigenstates enter the

B e ] Araiaae SSRRLY waa ¥ i Le s gy el wistwa Aiaw

energy, the functlonally continunm normalization of the eigenstates needs not be
elaborated on here. It remains to determine the eigenfield ®(x) and the one-particle
wavefunction ¥(g) such that the energy expectation value

_ A X
{H,) = Esel['+% J‘ (v¢unph(x))2 d3x+-[ '1’(‘1)(“%"’ ecDunph reg) !Mq) d- q

is an absolute minimum. This leads to the differential equationst

APy opn(x) = el (x)|7eg (8)
A
(_ﬁ-*"e(bunph rr:g(q)) !p(q) = Ed’(") (9)

We obtain parameter-independent equations by the following substitutions:
D, ol X) > me P oo me’x) w(g) > (me’y*p(me’q) E-»me'E. (10)

Equation (8) implies that ®,,,, behaves like 1/r at large distances. This guarantees

that the ground state solution of (9) is a bound state with an exponential fall-off at

large radii. The length scale of the fall-off is the inverse of me” as can be seen from (10).
We now discuss the physicality of the ground state

|O) Udec(l unph)®|w0)) (11)

By the Ehrenfest theorem the expected value of V - E(x) should be zero everywhere
which it 15 indeed. To see this we note that by (5) and {7)

V- E‘(x) Udec = Udec(A(i)unph(x) - epo(-\?_ é))' (12)

+ There 1s a Lagrange multiplier (energy eigenvalue) only for the particle wavefuncuon, the vanation of the
eigenfield @ 15 not restricted.
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The expectation value of the first term on the rus, taken with the ground state (11),
is just Aﬂbun,,,,(x)(%lwﬂ) which is eli(x)|, by (8} The second term on the rus of (12)
gives (Duon|Puaon) | (—€)palx — g)ifo(g)]” d’x and because of (2) this just cancels the
previous term

However, going beyond expectation values by decomposing the particle wavefunc-
tion i1, into position eigenstates, we see from the rus of (12} that there are two charge
densities involved. (1) a background charge density Ad,,.,, which is independent of
the particle position and which by (8) has the spatial extent of the particle wavefunction
e, and (13} the particle’s intrinsic charge density which 1s centred at the particle
position and which has the spatial extent of the regulating function p,.

In the spatial domain to which the quantum particle is bound by the background
charge the background electrostatic potentia! is thus not very strong in comparison
with the particle’s potential. In particular, the mteraction with another charged particle
{a test particle) wouid be dominated by the physicai Coulomb potential 1n a region
whose spatial extent is of the order of 1/{me”} by (10).

In order to see whether the unphysicahities can be absent altogether, we now
consider the limit me” - 0. The limit of a massless Schridinger particle, clearly, cannot
be handled by the non-relativistic kinetic energy term (3).

3. Massless particle

In this section we replace the non-relativistic kinetic energy (3} with the massless
relativistic analogue,

Hk:n = ((ﬁ_ eli!ong reg(@))zj”z-

Tke first step of the analysis can be carried out unchanged. Pulling out the same unitary
factor Uy, from all states in the Hilbert space and using the eigenbases of d,,, and
particle position again, we arrive at the following energy expectation value

(H)= Esac+ 1 J (VD upnt X))’ d3x+J IV =B,+ €@ o @) 00} &g, (13)
The action of v—A (a non-local operator) is defined as muluplication by |p| in the

particle momentum space. The mimmum of the total energy is now determined by the
integro-differential equations

Atrbunph(x) = eid’(-")ﬁeg (14}
(V=B + e@unpn 1x())9(g) = Epuntb(g)- (15}

As E,.; 15 independent of the particle wavefunction and @, takes negative values
by (14},

Eillgl (H'> = Esell‘+ Epan +% .[ (vq)unph(x))z dlx = Eself+ ((Pz) ”2) +%(E(I)unph(o)>-

It will be shown in the appendix that if the bare charge e 1s not too large, the minimum
of the total energy is attained 1f the wavefunction of the relativistic Schrodinger particle

spreads out over all space—the particle is not bound to a local fluctuation of the
background charge. In fact,

(WY iy + Kitr] ey @)} = (1 — Ce2 NI PP ) (16)
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where C >0 is sonte constant depending on the quality of the estimates used. Thus,
if < C"! the absolute minimum of the energy is attained (cf (13)) if: (1) the
wavefunction approaches zero momentum (mimmum of particle’s total energy), and
{1i) ®,npn approaches a constant (rmimum of unphysical electrostatic energy)

The maximal elecinc charge for which the estimate makes sense and for which
physicality 1s an aotomatic property of the relativistic Schrodinger-particie ground
state 1s

2

L P2y 2
el 1_ mf(!,bll(P 2 ) el —inf Eyn an
C ¢ — (Y DPunpnl @)Y 0 |Ecoul

where @,..,(x} solves the Poisson equation {14) and is itself proportional to (y|¢)
So far this author has been unsuccessful 1n solving the nonlinear optimization problem
{17) by numerical methods. However, insertion of various analytically simple functions
is suggestive of the numerical range in which the cntical charge will lie A selection
of spherically symmetric wavefunctions is evaluated in table 1. It should be noted that
the energy ratio to be minimized is scale invanant so that each of the wavefunctions
represents a one-parameter family. As apparent from table 1,

2

e
Qe z-z;l‘= 2.5.

By the correspendence principle, the quantum-dynamically generated Coulomb field
is expected to break down for macroscopic values of the electric charge since without
the Gauss constraint there would be no longitudinal electric fields in the lowest-energy
state of a classical charged particle. In the present framework this breakdown shows
up in that a spatially narrow wavefunction with an energy oce®*/r, 1s more favourable
at large ¢’ than 2 spread-out wavefunction with the Coulomb energy «e*/r,. In fact,
for a given particle wavefunction the kinetic energy Ei,, is independent of ¢® while
Ecou, the part of the field energy which depends on the wavefunction through (14),
is proportional to —e>. Once E,,,+ Ec,. takes a negative value it can be lowered
further by ¢enformal contraction of the wavefunction down to radil of the order of
the regularization radius ry. The particle is then located in space and by (14} the
unphysical longitudinal field no longer vanishes.

An upper bound on the total energy in this unphysical case can be obtained as
follows. After the decoupling transformation Uy, it is sufficient for this estimate to
consider an eigenstate of the longitudinal electric field with the eigenfield

e
(pmai(x) = [411'1.‘— q°—|],eg‘

Table 1. Some kinetuc-to-Coulomb energy ratios

r‘p( r) Elun/ ECouI
exp(—r) [+
rexp{-r) 341
exp(—r) 352
rexp(-r’) 356
sinr, 0<Sr<=7 1000

rf (%) 304
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This is not an exact solution of (14} and therefore not a local minimum of the energy
expectation. Anticipating a spatially narrow particle wavefunction in the neighbour-

hood of g, we may expand, with respect to the particle displacement, the total field
energy including the Couloimb self-energy analogous to the nonrelativistic equation (6):

2
[
=1 Ve —al i
Eﬁcld 3 J (V‘I’ma.(x} [41r!x-'-q|]reg) d *

ePICRTANCETAR A [—'“’—]
Il reg

= %ez(q - ‘10)2.00(0)-

*=0

47|x|

Changing to momentum space and assuming po(0? =3/47ry as for a homogeneous
charge distribution of radius r,, the total energy is given by the expectation value of
the operator

2

e
ipl = po(0)4,.
iw

The optimal particle wavefunction 1s an Airy function and the lowest eigenvalue of
the total energy 1s [6]

213
e 1
23x|— —
[417] L]

4. Discussion

We have shown that the exact Coulomb field of a charged quantum particle is generated
by minimal coupling to the longitudinal modes of the electromagnetic field, provided
that the rest energy of the particle is entirely electrostatic and that the electric charge
e is not larger than e.,.=6. It remains to see if these requirements are consistent with
full quantum electrodynamics. In fact, the bare charge of the ¢lectron, in the QED sense
of the term, is infinite, but the total charge visible outside the domain of fermionic
vacuum polarization around the electron position is such that ¢’/ 4= = % which would
be small enough indeed for automatic generation of the Coulomb field. In the model
considered here, only modes of the electromagnetic field with wavelengths larger than
the radius of the smoothed-out charge distribution p, are coupled to the electron’s
charge distribution; it is thus the renormalized value of e which determines the effective
strength of minimal coupling.

A mechanism that generates long-range fields for small coupling which collapse
for «> 2.5 is reminiscent of colour confinement. The corresponding scenaric would
be that Coulomb-like fields prevail at length scales in the asymptotically free regime,
and that for more extended objecis, in which the total colour charge has piled up to
a critical value, a breakdown occurs by which the colour charge is rendered invisible
outside.

The interpretation, in QED terms, of the bare mass parameter m as employed in
the model may be approached by a comparison of self-energies. The classical electron
radius ry is defined such that the electron mass coincides with the self-energy of the
Coulomb field cutside ro [7]; if m were to be identified with the remainder of the total
electron rest energy it would be perfectiy sensible to put it equal to zero. However, m
might as well be identified by a comparison of self-momenta and will then, as usual



2782 L Polley

with classtcal models of the electron’s internal structure [7], be different by a consider-
able factor depending on the details of the geometry assumed. The discrepancy between
the masses derived from self-energy and self-momentum s particularly pronounced if
the transverse modes of the electromagnetic field are decoupled from the particle: the
electromagnetic part of the self-momentum then, in fact, vanishes.

To resolve the discrepancy 1nt the interpretation of the mass parameter would require
to include 1n some way the transverse modes of the vecior potential in the energy
estimates. Quantitatively, a comparison of energy expectations can be made for two
distinguished states of the parucle in interaction with the full electromagnetc field-
for the product of a free particle wavefunction with the free electromagnetic vacuum,
and for the analogous state in which the particle is dressed with its proper Coulomb
field (an eigenstate of the electric ficld operator} at each particle position. Independently
of whether the transverse modes are included or neglected 1n such a calculation, the
Coulomb field 1s found to reduce the total energy [8].

Qualitatively, coupling the particle to the transverse modes would enhance 1its
quantum fluctuations in configuration space so that the static components in the charge
distribution operator would become less important. 1t is only for the static components,
however, tha. Gauss’ law requires more than 1ts time derivative, which is essentially
the {Hamiltonian) equation of coniinuity. Thus dynamical generation of Coulomb
fields can be expecied to occur as well for a quantum particle munimatly coupled to
the complete electromagnetic field.

Appendix. Estimating the unphysical Conlomb energy

We here prove the crucial mequality (16) for the automabtic (unconstrained) gauge
mvariance of the relativistic one-particle ground state The following standard
definitions and integral inegualities will be used (notation of [9]): The p-norm of a
function f in » dimensional space is defined by

=] fseor aes]

For products of functions we have Holder’s inequality:

I/ ell.<lrliBels for1/p+1/q=1/r.

For convolutions we have Young's mmequality: let f+g denote the convolution
[fix=y)g(y) d"y; then

I =gli-<1Fl.lel, where 1/p+1/g=1+1/r.

A more specific case is Sobolev's mequality:

(AP n on
[ [ g gy < s (19
x —~ yl
where in general 1/p+1/r+A/n=2and 1<p, r<co and the constant Cs depends on

p.rAandn .
Fourier transforms can be estimated by the Hausdoirfi-Young inequality: let f
denote the Fourier transform of f and let 1/p+1/g=1 with 1= g <2, then

17 p = Capll F -
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Inequality (16} can now be derived as follows. By solving the Laplace equation (14)
for ®,,,, we obtain the potential energy expectatton of the Schrodinger pariicle

L (e Pyl Q) = ” e Nl i g1 g,
e 4ar|x — pi

To this expression we apply Sobolev's inequality; the case of interest here1s p=r=6/3,
n=3, A=1and f=g=|¢|°. By Young’s inequality and by the definition of regular-
1zation 1n (2},

Il "Ml?eg"p = “ |dli2§!p for any p
so the ‘reg’ subscript can be omitted here By construction of the p-norm,
Hitb!zﬂpE("d’HZp): (19)

so what we need is the 12/5-norm of the real-space Schrodinger wavefunction. It is
related through the Hausdorfl- Young inequality to the 12/7-norm of the wavefunction
in momentum space,

¥l s =< Cun ”'17“1:,/7 (20)

Information about ||[#{),2,; 1s provided by the normahzation integral
= {1t atp =ty

and by the kinetic energy expectation of the wavefunction,
B = [ a1 2510

Exploiting the normalization by integrating over momenta p<u only and using
Hdlder’s inequahity we obtain

1 llvar = 1l Bl (dm/3)1 2 (p<p) (21)

Exploiting the kinetic energy by integrating over momemta p>p only and using
Hdélder's inequality again,
”‘f;ﬂnw: Ilp""z(p”ztﬁﬂl.:,?

< {1 liall p' Pl = 4w /3) T PR (p>p). (22)

In the total, by the tnangle inequality for the 12/7-nerm,

B llves = BTz dpe e N6l a2sa)p
Adding up (21) and (22) and optimzing [10] with respect to g,

p=(p" g, = (P

(611427 = 204 /3) 1 3((P2) V2,

Finally, returning through (20), (19) and (18) to the estimate (16) of the -inphysical
Coulomb energy in terms of the particle’s bare momentum, we see that the constant
in the inequality is not greater than

'

=RiA NI
N (e \/S\.—

HY
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