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Coulomb fields generated by minimal coupling* 

L Polley 
Fachberewh Phyiik. University, W-2900 Oldenburg. FsderA Republic of Germany 
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Abrbart. In the ground stale of an electrically charged spinlers quantum panicle. interaet- 
mg with only the longitudinal panofthequantized electromagnetic field.theexact Coulomb 
potential 15 generated dynamically by minimal coupling i f  the non-electromagnenc mass 
of the panicle vanisher and ifthe couplmgeonrrant (corresponding to renormalized chargel 
IS such that e < q,., = 2 5 Thus. contrary to dasc~cal erpectationr. Gaurs' law need not 
be imposed as a physicality constraint in this case For macroscopic values of the elennc 
charge, the Coulomb field IS energetically dirfavoured If the charged panicle IS assumed 
massive and non-relativistic. the ground state has an unphysical Static background charge 
to which the particle IS hound In this case translational 8s well ar gauge invariance is 
spontaneously broken. 

1. Introduction 

The breaking of a local chiral gauge symmetry by the ground state of the Higgs field 
is part of the standard scenario for the electroweak interaction. In ordinary gauge 
theories, on the other hand, local gauge invariance of states is conventionally enforced 
by imposing Gauss' law as a physicality constraint. The different treatment of ordinary 
and chiral gauge symmetries has recently been related to the non-existence of a chirally 
invariant lattice regularization [ I ] .  In fact, for ordinary lattice QCD it had been shown 
heuristically [ 2 ]  that even if the Gauss constraint i s  released the ground state would 
not break local SU(3) invariance. Thus the vacuum states in both kinds of gauge theory 
can be treated on the same formal basis. To what extent can Gauss' law be expected 
to hold automatically also for the ground states of the charged sectors in an ordinary 
gauge theory? 

For i+ i-dimensionai continuum Yang-Miiis iheory, the non-degeneracy of ine 
unconstrained vacuum state in the temporal gauge was already derived in [ 3 ]  by 
exploiting an analogy between the Yang-Mills Hamiltonian and non-relativistic m- 
dimensional quantum mechanics. The argument of [ 2 ]  is based on Wilson fermions 
and holds to all orders in the hopping-parameter and strong-coupling expansions. In 
fact, successive orders in these expansions are generated by gauge invariant operators 
B 2 / g 2  in the strong ceuplig and K ~ ~ ~ Y O O L .  (V -iA)+ in the hopping parameter series- 
while at zeroth order the Hamiltonian gzEz+m&,@ has the gauge invariant ground 
state 

n IE,=O)O n I s = 0 ) .  
hnlr 111es 

It is not in contradiction with classical expectations that the absolute ground state of 
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an unconstrained local gauge theory would respect Gauss’ law automatically In the 
case of electromagnetism, 

V E ( x )  = p ( x )  

is clearly satisfied for the trivial solution of zero field strengths and charge densities. 
But in the presence of a charged particle, neglection of the Gauss constraint would 
still annul all Coulomb fields in the classical theory, thus leading to unphysical 
dynamical behaviour. In the classical ground state configuration the momentum of the 
particle as well as the unconstrained electric and magnetic field strength would exactly 
vanish. In quantum theory, however, such a configuration is in contradiction with the 
canonical commutation relations. As will he shown in the present paper, the quantum 
Gauss constraint is indeed redundant in this case for a certain range of dynamical 
parameters. 

Not much seems to be known about the ground state of the Maxwell field with 
minimal coupling to a quantum particle. The related polaron problem of a quantum 
particle interacting with a scalar field has only been approximately solved using 
sophisticated variational techniques IS]. In order to enable a qualitztive analysis, the 
transv-rsal modes of the Maxwell field shall he neglected in the present paper. This 
should he a physically sensible simplification since Abelian local gauge invariance and 
the Coulomb fields accomplishing it are entirely contained in the longitudinal modes. 

For a massive non-relativistic Schrodinger particle (section 2) the interacting 
ground-state properties can then he inferred from standard qualitative methods of 
quantum mechanics. The energetically favourable states have a non-dynamical back- 
ground charge density (which is a measure of deviation from physicality) to which 
the particle is bound. The spatial extent of the bound state, as usual, is of the order 
of l / a  Compton wavelengths. The background charge is an extended distribution, 
though; it exactly counters the probability density (not the intrinsic charge density) of 
the Schrodinger particle. This implies that the dynamically generated field of the 
particle vanishes on length scales greater than the Bohr radius hut takes the Coulomb 
form, indeed, on length scales between the Bohr radius and the ultraviolet cut-off (the 
classical electron radius). 

For a relativistic particle with zero non-electrostatic mass (section 3) the square-root 
kinetic energy requires the use of integral inequalities. (Due to the negative energy 
states the Dirac form of a relativistic kinetic energy is.not appropriate for studying 
one-panwe ppunu  sraces.) m inis casc me ~ W d l l l d l l V C  gruunu sraie pruprcrisr vs iy  
much depend on the particle’s electric charge. If e’/49 < 2.5 the system behaves as 
expected by extrapolation from the non-relativistic case. The background charge 
distribution of total charge -e then spreads out uniformly in space and is thus effectively 
absent. Consequently, the exact Coulomb field is generated by the dynamical mechan- 
ism inherent in the minimal coupling term of the Hamiltonian. If e2 takes macroscopic 
values, however, the collapse of the Coulomb field becomes energetically favourable. 

The relation of the semi-phenomenological model parameters m and e to the 
parameters of full QED is discussed in section 4. 

.~~ .  -A.L.-, 1 ~ -  ..~.--. -~~.,:*..:... _.._.- :-. 

2. Non-relativistic particle 

A locally gauge invariant model of the charge-one sector of QED that can he qualitatively 
solved by standard methods of quantum theory is a charged non-relativistic quantum 
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particle interacting with only the longitudinal (Coulomb) modes of the quardized 
electromagnetic field. As for the choice of a quantization procedure, we shall start out 
from the temporal gauge in which the vector potential, even in the general non-Abelian 
case, is a Cartesian coordinate [SI. The canonically conjugate momentum is the electric 
field strength, and the canonical commutation relations can be postulated consistently 
in the standard form 

[E&), A,(Y)l=Isk,s(x-Y) [E,(x), EdY)l=O=[A,(x), A,(Y)l. 

~ 6 ,  R1=isk, [ c?k , c? , l=O=[kRl .  

For the quantum particle the commutation relations are 

The complete temporal-gauge Hamiltonian of the minimally coupled system would be 

(1) 

where the 'reg' subscript denotes a smoothed-out particle-field interaction uv regular- 
ization with a charge distribution po is defined for any function f by 

1 
He,,,, =+ (E(x)'+(V X A(x))') d3x+- (fi-e&(Q))'  I 2 m  

(2) 

The kmetic energy of a Schrodinger particle interacting with only the Coulomb modes 
of the gauge iieid is 

(3) 

The transversal modes, coupled in (1) to the longitudinal ones through the particle 
energy, are now dynamically independent and can be omitted from the following 
considerations. Thus the model Hamiltonian reads 

1 . .  A 

1 "  - 
H,,.=-(P-eA,..,,fQ))'. 2m 

H =t Eron&)' d'x+-(P-eA,.,, rcg(Q))2. I -  2m 

Vacuum fluctuations are still present due to the non-commutativity of /& and A,ons. 
They can be absorbed in the decoupling transformation 

The effect of this transformation on the particle momentum fi can be obtained by 
using the commutator expansion e A B F a = B + [ 4  E]+. . . which here terminates at 
the first commutator: 

The term added to fi  just cancels the longitudinal vector potential in the kinetic energy. 
Likewise, the transformation adds a Coulomb field to ths electric field strength 
operator, 

h) U,..= U & ( X ) + ~ V A ~ W I X -  QI);:). ( 5 )  
The Coulomb field is dependent on the particle position operator and is rendered finite 
hw th- --m..i-A-a+&... -f eh- eh---- A---:... ', .... ..,~".P..LV..".. "I L..C .,.,.7,EC "S.,".LJ. 
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We can now pull out the unitary factor U,,, of (4) from all states in the Hilberg 
space and transform the Hamiltonian accordingly 

$2 

If'= U ~ . , H U ~ , , = )  (E,,,,(~)+eP,f4alx-Ql),~)'d'x+-. ( 6 )  

In  this representation the longitudinal part of the vector potential IS manifestly a cyclic 
variable only the conjugate momentum E,,,, occurs in H', and it commutes with any 
other operator in the transformed Hamiltonian. Hence, by working i n  an E,onn eigen- 
base, the eigenvalues ('eigenfields't of E,,,, can he treated as static background fields 
As usual, we shall write the longitudinal E field and its eigenvalues as a gradient 

I -  2m 

e,&) =v6""&) (71 
The @ field will later turn out to measure the deviations from Gauss' law. Inserting 
(7)  into(6) weobtainthe familiarformofthetotalenergyforaparticleinan electrostatic 
potential (E,,,, is the Coulomb self-energy) 

@Z 

H ' =  E,.,,+! (v@,.,,(x))'d'x+e@,,,, ccs(d)+- I 2m 

The carets have been dropped from the @s because we are now working in the @ 
eigenbase. To determine the ground state of this Hamiltonian we first note that in a 
@ eigenstate the only degrees of freedom left are those of the wavefunction of the 

energy, the functionally continuum normalization of the eigenstates needs not be 
elaborated on here. It remains to determine the eigenfield @(x) and the one-particle 
wavefunction * ( q )  such that the energy expectation value 

SchrGdlnger pr!ic!e, $($), Since nn!y !hP elgenv.!ues of the eigenst2tes e"!eT !he 

W')= E,,,,+f (V@..,dX))*dJx+ I & ( q )  ( k  --+eaunph r c a ) @ ( ~ )  d3q 

A r @ u n p d ~ )  = elllr(x)lzc, (8) 

I 
is an absolute minimum. This leads to the differential equations? 

We obtain parameter-independent equations by the following substitutions: 

me'Q?..,dme'x) +(n) -* (me')"2$(me'a) E-me4E. (IO) 

Equation (8) implies that behaves like l / r  at large distances. This guarantees 
that the ground state solution of (9 )  is a bound state with an exponential fall-off at 
large radii. The length scale of the fall-off is the inverse of me2 as can be seen from (10). 

We now discuss the physicality of the ground state 

10) = ~ d , c ( l ~ " " p h ) o l ~ o ~ )  (11) 

v . k(x)u,.,= ~ , , , (~6 , . , , (x ) -ep , (x -  4)). 

By the Ehrenfest theorem the expected value of V . k(x)  should be zero everywhere 
which it IS indeed. To see this we note that by ( 5 )  and (7) 

(12) 

t There IS a Lagrange multiplier (energy eigenvalue) only for the particle wavefunclion. the vanation of the 
ergenfield IS not resincted. 
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The expectation value of the first term on the RHS, taken with the ground state (11). 
is just A@unph(x)($o~~o) which is ei$(x)l:cp by (8)  The second term on the RHS of (12) 
gives ( @ u n p , , ~ @ u n o J ~  (-e)po(x-q)j$, ,(q)I’ d’x and because of (2) this just cancels the 
previous term 

However, going beyond expectation values by decomposing the particle wavefunc- 
tion $,, into position eigenstates, we see from the RHS of (12) that there are two charge 
densities involved. ( I )  a background charge density A4unDh which is independent of 
the particle position and which by (8) has the spatial extent ofthe panicle wavefunction 
$,,, and (ii) the particle‘s intrinsic charge density which is centred at the particle 
position and which has the spatial extent of the regulating function po.  

In the spatial domain to whxh the quantum particle is hound by the background 
charge the background electrostatic potential is thus not very strong in comparison 
with the particle’s potential. In particular, the interaction with another charged panicle 
ia  test particie) wouid be dominated by the physicai Couiomb potentiai in a region 
whose spatial extent is of the order of I/(me’) by ( IO) .  

In  order to see whether the unpbysicalitiea can he absent altogether, we now 
consider the limit me’n0.  The limit of a massless Schrodinger particle, clearly, cannot 
he handled by the non-relativistic kinetic energy term (3).  

3. Massless particle 

In this section we replace the non-relativistic kinetic energy (3) with the massless 
relativistic analogue, 

H~~~ cc~(Q))2)i~2. 
The first step of the analysis can he carried out unchanged. Pulling out the saqe  unitary 
factor Udee from all states in the Hilbert space and using the eigenbases of and 
particle position again, we arrive at the following energy expectation value 

W‘)= &.,c+$ ( W a . p d ~ ) ) 2 d 3 ~ +  ~ ( q ) ( a + e @ , . , , , , , ( q ) ) $ ( q )  d3q. (13) 

The action of (a non-local operator) is defined as multiplication by IpI in the 
particle momentum space. The minimum of the total energy is now determined by the 
integro-differential equations 

I I 
A r 4 u n p h ( ~ )  = elJl(x)lL, (14) 

&))*(d = Eoafi$(q). (1st 

takes negative values As E,.,, IS independent of the particle wavefunctlon and 
by (141, 

min (H’ )=  Lr+ E,,”.+t 

It will be shown in the appendix that if the hare charge e IS not too large, the minimum 
of the total energy is attained If the wavefunction ofthe relativistic Schrodingerparticle 
spreads out over all space-the particle is not bound to a local fluctuation of the 
background charge. In fact, 

(*l(P2)1’21*)+~$le@..ph(Q)l*) (1 - C e * ~ ~ ~ l ~ P z ~ ~ ’ ~ l ~ ~  (16) 

(V@,,,,(~))~d’x = E,,,,+((P’)’”)+f(e@..,,(Q)). 
A* I 
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where C > 0  is some constant depending on the quality of the estimates used. Thus, 
if e * c C - '  the absolute minimum of the energy is attained (cf (13) )  i f  ( I )  the 
wavefunction approaches zero momentum (minimum of particle's total energy), and 
(ii) (Punoh approaches a constant (minimum of unphysical electrostatic energy) 

The maximal electric charge for which the estimate mahes sense and for which 
physicality is an automatic property of the relativistic Schrodinger-particle ground 
state is 

where '&&) solves the Poisson equation (14) and is itself proportional to ($14) 
So far this author has been unsuccessful in solving the nonlinear optimization problem 
(17) by numerical methods. However, insertion of vanous analytically simple functions 
is suggestive of the numerical range in which the cntical charge will lie A selection 
of spherically symmetric wavefunctions is evaluated in table 1. It should he noted that 
the energy ratio to be minimized is scale invanant so that each of the wavefunctmna 
represents a one-parameter family. As apparent from table 1, 

By the correspondence principle, the quantum-dynamically generated Coulomb field 
is expected to break down for macroscopic values of the electric charge since without 
the Gauss constraint there would be no longitudinal electric fields in the lowest-energy 
state of a classical charged particle. In the present framework this breakdown shows 
up in that a spatially narrow wavefunction with an energy ace'"/r, is more favourable 
at large e2 than a bpread-out wavefunction with the Coulomb energy Xe ' / r , .  In fact, 
for a given particle wavefunction the kinetic energy Ek,. is independent of e' while 
&",, the part of the field energy which depends on the wavefunction through (14), 
is proportional to -e2. Once Ek,,+ Ec,., takes a negative value it can be lowered 
further by conformal contraction of the wavefunction down to radii of the order of 
the regularization 1adiu.i r,,. The particle is then located in space and by (14) the 
unphysical longitudinal field no longer vanishes. 

An upper bound on the total energy in this unphysical case can be obtained as 
follows. After the decoupling transformation LJd,,,, it is sufficient for t h ~ s  estimate to 
consider an eigenstate of the longitudinal electnc field with the eigenfield 

exp(-rl m 
r e x p ( - r )  34 I 

nn,, o s r s a  100 0 
r / (  1 + , I )  39.4 

rZexp(-.) 35 2 
r e x p ( 4 )  35 6 
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This is not an exact solution of (14) and therefore not a local minimum of the energy 
expectation. Anticipating a spatially narrow particle wavefunction in the neighbour- 
hood of q,, we may expand, with respect to the particle displacement, the total field 
energy including the Coulomb self-energy analogous to the nonrelativistic equation (6): 

Changing to momentum space and assuming po(0) = 3/4wri as for a homogeneous 
charge distribution of radius r,, the total energy is given by the expectation value of 
the operator 

The optimal particle wavefunction is an Airy function and the lowest eigenvalue of 
the total energy is 161 

4. Discussion 

We base shown that the exact Coulomb field of a charged quantum particle is generated 
by minimal coupling to the longitudinal modes of the electromagnetic field, provided 
that the rest energy of the particle is entirely electrostatic and that the electric charge 
e is not larger than ec,,=6. It remains to see if these requirements are consistent with 
full quantum electrodynamics. In fact, the bare charge of the electron, in the QED sense 
of the term, is infinite, hut the total charge visible outside the domain of fermionic 
vacuum polarization around the electron position is such that e2/4w = & which would 
be small enough indeed for automatic generation of the Coulomb field. In the model 
considered here, only modes of the electromagnetic field with wavelengths larger than 
the radius of the smoothed-out charge distribution po are coupled to the electron’s 
charge distribution; it is thus the renormalied value of e which determines the effective 
strength of minimal coupling. 

A mechanism that generates long-range fields for small coupling which collapse 
for LI > 2.5 is reminiscent of colour confinement. The corresponding scenario would 
be that Coulomb-like fields prevail at length scales in the asymptotically free regime. 
and that for more extended objects, in which the total colour charge has piled up to 
a critical value, a breakdown occurs by which the colour charge is rendered invisible 
outside. 

The interpretation, in QED terms, of the bare mass parameter m as employed in 
the model may be approached by a comparison of self-energies. The classical electron 
radius r, is defined such that the electron mass coincides with the self-energy of the 
Coulomb field outside r, [7]; if m were to be identified with the remainder 3f the total 
electron rest energy it would be perfectly sensible to put it equal to zero. However, m 
might as well be identified by a comparison of self-momenta and will then, as usual 
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with classical models of the electron's internal structure [71, be different by a consider- 
able factor depending on the details of the geometry assumed. The discrepancy between 
the masses derived from self-energy and self-momentum is particularly pronounced if 
the transverse modes of the electromagnetic field are decoupled from the particle. the 
electromagnetic part of the self-momentum then, in fact, vanishes. 

To resolve the discrepancy in the interpretation of the mass parameter would require 
to include in some way the transverse modes of the vector potential in the energy 
estimates. Quantitatively, a comparison of energy expectations can be made for two 
distinguished states of the particle in interaction with the full electromagnetic field. 
for the product of a free particle wavefunction with the free electromagnetic vacuum, 
and for the analogous state in which the particle is dressed with its proper Coulomb 
field (an eigenstate of the electnc field operator) at each particle position. Independently 
of whether the transverse modes are included or neglected in such a calculation, the 
Coulomb field is found to reduce the total energy [SI. 

Qualitatively, coupling the particle to the transverse modes would enhance its 
quantum fluctuations in configuration space so that the static components in the charge 
distribution operator would become less important. It is only for the static components, 
however, tha. Gauss' law requires more than its time derivative, which is essentially 
the (Hamiltonian) equation of continuity. Thus dynamical generation of Coulomb 
fields can be expected to occur as well for a quantum particle minimally coupled to 
the complete electromagnetic field. 

Appendix. Estimating the unpbysical Coulomb energy 

We here prove the crucial inequality (16) for the automatic (unconstrained) gauge 
invariance of the relativistic one-particle ground state The following standard 
definitions and integral inequalities will be used (notation of 191): The p-norm of a 
function f in n dimensional space is defined by 

ItflI.=[ J I ~ ( X ) I P ~ " X ] " " -  

ll~~llr~llfllpll~llq for U P + l / q = U r .  

For products of functions we have Holder's inequality: 

For convolutions we have Young's inequality: let f *  g denote the convolution 
Jf(x-y)g(y)d"y; then 

Ilf * zll,$ llfllpllgllv where lip+ 1/q = 1 +I/?. 

A more specific case is Sobolev's inequality: 

whereingeneral l / p + l / r + A / n = 2 a n d  l < p ,  rcmandthecons tan t  C,dependso~i 
p. r, A and n. 

Fourier transforms can be estimated by the Hausdorff-Young inequality: let f 
denote the Fourier transform of f  and let I/p+ l / q  = 1 with I S  q S 2, then 
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